skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Jichang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Although tremendous efforts have been devoted to understanding the origin of boosted charge storage on heteroatom‐doped carbons, none of the present studies has shown a whole landscape. Herein, by both experimental evidence and theoretical simulation, it is demonstrated that heteroatom doping not only results in a broadened operating voltage, but also successfully promotes the specific capacitance in aqueous supercapacitors. In particular, the electrolyte cations adsorbed on heteroatom‐doped carbon can effectively inhibit hydrogen evolution reaction, a key step of water decomposition during the charging process, which broadens the voltage window of aqueous electrolytes even beyond the thermodynamic limit of water (1.23 V). Furthermore, the reduced adsorption energy of heteroatom‐doped carbon consequently leads to more stored cations on the heteroatom‐doped carbon surface, thus yielding a boosted charge storage performance. 
    more » « less
  2. Abstract Ever‐developing energy storage technologies demand the pursuit of advanced materials with multiple functionalities. Recent studies revealed that multiple heteroatom‐doped carbon has been wildly used for bi‐functional or even tri‐functional energy storage and conversion. However, few efforts have been made to uncover the origin of multi‐functionalities. Herein, a nitrogen, phosphorus, and sulfur tri‐doped carbon is designed in this work with large porosity, rich heteroatoms doping and high mass density, exhibiting excellent bifunctionalities on supercapacitors and oxygen reduction reaction. Importantly, the density functional theory calculations demonstrate the relevant co‐doping and tri‐doping generate more active sites on neighboring carbon atoms than single doping, and the same type of active sites may enhance bifunctionalities simultaneously. The present investigations provide a promising guidance on the design of multi‐functional materials for future energy storage and conversion applications. 
    more » « less